Imagen de la Corriente Circumpolar Antártica / Copernicus

  • La investigación, publicada en Nature Geosciences, aborda un cambio de paradigma en la comprensión de los procesos desencadenantes del inicio de la Corriente Circumpolar Antártica y de su papel en la formación del manto de hielo antártico.
  • La Corriente Circumpolar Antártica es la corriente oceánica más grande de la Tierra, conectando el Atlántico, Pacífico e Índico, e influye sustancialmente en el CO2 atmosférico y el clima global.

Sevilla, a 30 de enero de 2024.

Un equipo de científicos internacionales liderado por investigadores del Instituto Andaluz de Ciencias de la Tierra (IACT), del Consejo Superior de Investigaciones Científicas (CSIC), el Imperial College de Londres, la Universitat de Barcelona y la Université de Bordeaux, ha descubierto que una Corriente Circumpolar Antártica, con características similares a las actuales, no se formó hasta aproximadamente hace 14 millones de años (Ma). Este hallazgo desafía la creencia generalizada de que el inicio de la Corriente Circumpolar Antártica fue desencadenado por la apertura y profundización de los Pasajes oceánicos de Drake y Tasmania. La convicción generalizada sostiene que la apertura de los pasajes oceánicos y el inicio de la Corriente Circumpolar Antártica son clave en el aislamiento térmico de la Antártida y en el desarrollo de los mantos de hielo continental antárticos durante la Transición Eoceno-Oligoceno (~34 Ma). En esencia, los resultados de este estudio demandan un cambio de paradigma en nuestra comprensión de los procesos desencadenantes del inicio de la Corriente Circumpolar Antártica y de la interacción de dicha corriente con el manto de hielo antártico a lo largo de las épocas históricas y frente al cambio climático futuro.

La Corriente Circumpolar Antártica es la corriente oceánica más grande de la Tierra, conectando las tres principales cuencas del océano global (Atlántico, Pacífico e Índico). La Corriente Circumpolar Antártica regula el transporte de calor, humedad, carbono y nutrientes entre el Océano Austral y las regiones de bajas latitudes, influyendo sustancialmente en el CO2 atmosférico y el clima global. A pesar de su papel fundamental en la circulación oceánica global, la dinámica climática y la estabilidad de la capa de hielo antártica, el cuándo y cómo la Corriente Circumpolar Antártica adquirió sus características actuales ha sido motivo de debate durante más de cuatro décadas. Dilucidar este conocimiento es crucial para comprender la dinámica actual y futura de los frentes en el Océano Austral, especialmente frente al continuo calentamiento climático global.

“Este hallazgo ha sido posible gracias al estudio de sedimentos marinos obtenidos por el Programa de Perforaciones Científicas Oceánicas (International Ocean Drilling Program-IODP) a cada lado del paso oceánico de Tasmania. Descubrimos que la Corriente Circumpolar Antártica (CCA) no se volvió tan potente como pensábamos hasta hace unos 10 millones de años, desafiando la creencia anterior. Contrario a la idea de que la CCA había causado el aislamiento térmico necesario para que se formara el primer gran manto de hielo en la Antártida hace unos 34 millones de años, nuestros hallazgos respaldan la hipótesis de que la disminución de los niveles de dióxido de carbono en la atmósfera fue el principal impulsor de este evento. Este estudio subraya la importancia de la variabilidad climática en la intensidad de los frentes oceánicos asociados con la CCA, lo cual, a su vez, puede influir significativamente en la dinámica glaciar en el contexto del calentamiento global actual”, indica Carlota Escutia, investigadora principal de este estudio.

 

Un cambio de paradigma

La creencia ampliamente aceptada sostiene que el inicio de la Corriente Circumpolar Antártica está vinculado a la apertura y profundización de las dos últimas conexiones terrestres con la Antártida, dando lugar a los Pasajes del Océano Austral (Pasaje de Drake y Puerta de Tasmania). Hasta ahora, el conocimiento generalizado es que la formación de la Corriente Circumpolar Antártica desencadenó el aislamiento térmico de la Antártida, lo cual culminó con la expansión a escala continental de la capa de hielo antártica durante la Transición Eoceno-Oligoceno (~34 Ma).En el artículo Late Miocene onset of the modern Antarctic Circumpolar Current, los investigadores utilizan una aproximación innovadora que combina isótopos de neodimio en dientes/huesos fósiles de peces y mediciones de tamaño de grano en sedimentos marinos a ambos lados de Pasaje de Tasmania. La ubicación de los sedimentos marinos analizados narra la crónica de los últimos 31 millones de años de la Corriente Circumpolar Antártica, facilitando la identificación precisa del instante en que la corriente evolucionó hacia una corriente continua, profunda y robusta, equiparable a su forma actual.

La investigación destaca que la apertura y profundización de los Pasajes del Drake y Tasmania condicionaron el desarrollo de un sistema de corriente circumpolar. No obstante, el verdadero desencadenante para el inicio de una Corriente Circumpolar Antártica con características similares a las actuales fue el marcado aumento en el contraste de densidad y la intensificación de los Vientos del Oeste del Sur a lo largo del Océano Austral. Estos cambios fueron impulsados por el enfriamiento y la expansión del hielo antártico después de la Transición Climática del Mioceno Medio (MMCO: ~14 Ma).

En esencia, este estudio requiere una transformación en nuestro paradigma para comprender los procesos que llevaron al inicio de la Corriente Circumpolar Antártica y la interacción entre dicha corriente y los mantos de hielo antártico a lo largo de las épocas históricas, en medio de los desafíos presentados por el cambio climático en curso.

 

Referencia:

Late Miocene onset of the modern Antarctic Circumpolar Current. Dimitris Evangelinos, Johan Etourneau, Tina van de Flierdt, Xavier Crosta, Catherine Jeandel, José-Abel Flores, David M. Harwood, Luis Valero, Emmanuelle Ducassou, Isabel Sauermilch, Andreas Klocker, Isabel Cacho, Leopoldo D. Pena, Katharina Kreissig, Mathieu Benoit, Moustafa Belhadj, Eduardo Paredes, Ester Garcia-Solsona, Adrián López-Quirós, Ariadna Salabarnada & Carlota Escutia . Nature Geoscience (2024) DOI: https://doi.org/10.1038/s41561-023-01356-3

 

Contacto:

Área de Comunicación y Relaciones Institucionales

Delegación del CSIC Andalucía

Consejo Superior de Investigaciones Científicas

Pabellón de Perú

Avda. María Luisa, s/n

41013 – Sevilla

954 23 23 49 / 690045854

comunicacion.andalucia@csic.es 

 

 

Descargar en PDF